
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Verifying Concurrent ML programs
a research proposal

Gergely Buday
Eszterházy Károly University

Gyöngyös, Hungary

Synchron 2016 Bamberg
December 2016



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Concurrent ML

▶ is a synchronous language

▶ a CML program consists of threads

▶ communicating via message passing

▶ (instead of shared memory)

▶ with rendezvous communication

▶ either the sender or the receiver blocks



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Reppy on concurrent programming

Writing correct concurrent programs is a difficult task. In
addition to the bugs that may arise in sequential programming,
concurrent programs suffer from their own particular kinds of
problems, such as races, deadlock, and starvation.

What makes this even more difficult is that concurrent programs
execute nondeterministically, which means that a programmay
work one time and fail the next.

Reppy: Concurrent Programming in ML



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Reppy on concurrent programming cont’d

A common suggestion to address this problem is to use formal
methods and logical reasoning to verify that one’s program
satisfies various properties. While this is a useful pedagogical tool,
it does not scale well to large programs.

Reppy: Concurrent Programming in ML



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Application of concurrency

▶ operating systems

▶ telecommunication

▶ startups: Whatsapp (Erlang), Bleacher Report (Elixir)

▶ multicore systems

▶ user interfaces: avoiding the event loop, poor man’s concurrency

▶ reactive systems



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Asynchronous vs synchronous message passing

in asynchronous message passing, the message queue of a channel
might grow without limit, causing a memory overflow

there is another problem with memory overflow: it is likely to be
far removed in time and in place from the source of the problem.

while in the synchronous case deadlock is the most frequent bug,
which is easily detected

thus, detecting and fixing bugs in a synchronous message-passing
program is easier

Reppy: Concurrent Programming in ML



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Asynchronous vs synchronous message passing cont’d

In theory, an asynchronous system is faster than a synchronous,
but in practice those systems need synchronisation as well,
possibly in the form of acknowledgement messages, leading to a
re-implementation of synchronous communication, which might
be slower done by hand.

In rendezvous communication, the sender and the receiver has
common knowledge. ”This property makes synchronous message
passing easier to reason about, since it avoids a kind of
interference where the state of the sender when the message is sent
is different than when the message is received”

Reppy: Concurrent Programming in ML



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

CML: spawning a thread and communication on channels

val spawn : (unit -> unit) -> thread_id

contrast to Unix: the child can run when the parent terminates

val channel : unit -> 'a chan
val send : 'a chan * 'a -> unit
val recv : 'a chan -> 'a



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

CML: events

events are possible communications, much like a function with a
unit argument is a possible computation in basic functional
programming:

fun greet () = print "Hello World!"

one can create an event from a channel with recvEvent and then
synchronise on it and get the corresponding value with sync:

val recvEvt : 'a chan -> 'a event
val sync : 'a event -> 'a

so recv is not a primitive, but a composition of event creation and
synchronisation:

val recv = sync o recvEvt



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

CML: selective communication

Or, nondeterministic choice

the run-time system chooses one from the enabled events from a list

and the communication takes place

val select : 'a event list -> 'a

Its event-based counterpart is choose:

val choose : 'a event list -> 'a event

where the obvious

val select = sync o choose

equation holds



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

CML: wrap: post-synchronisation

val wrap : ('a event * ('a -> 'b)) -> 'b event

fun add (inCh1, inCh2, outCh) =
forever
()
(fn () =>
let val (a, b) = select [

wrap (recvEvt inCh1,
fn a => (a, recv inCh2)),

wrap (recvEvt inCh2,
fn b => (recv inCh1, b)) ]

in
send (outCh, a + b)

end)



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Charguéraud on program verification

▶ through Hoare triples

▶ defining programs directly in a theorem prover

shallow embedding

▶ defining the semantics of the language in the logic of the
theorem prover, and in turn use these definitions to write
programs, and then prove correctness of these

deep embedding



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Deep embedding: SECD versus CEK

The semantics of a functional language can be defined through an
abstract machine

The SECD and CEKmachines produce the same result for any
expression that has a result, but they compute the result in a
different way.

Felleisen: SECD, Tail Recursion and Continuations



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

SECD vs CEK
Landin’s SECD: Stack, Environment, Control and Dump

In the SECDmachine, context is created by function calls, where
the current stack, environment, and control are packaged into a
dump. The stack provides a working area for assembling
application arguments.

This view of context accumulation is natural when approaching
computation from the Pascal or C model.

CEK: Control, Environment and Continuation
In the CEKmachine, context is created when evaluating an
application function or argument, regardless of whether the
function or argument is a complex expression.

This view of context accumulation is natural when approaching
computation from the lambda calculus model.

Felleisen: SECD, Tail Recursion and Continuations



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Concurrency semantics: Berry, Turner, Milner

Berry, Turner, Milner: A semantics for ML concurrency primitives

The authors give a transitional semantics for a language very similar
to CML

While Reppy arrived to the event type constructor via pragmatic
reasons, the authors reached to the same conclusion via semantic
reasoning

they claim that it is not possible to use the relational operational
semantics of the Definition of Standard ML

because there is no way to specify
potentially infinite interleaved evaluations



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Concurrency semantics: Havelund

Havelund: The Fork Calculus, Phd Thesis

Havelund develops various formalisms for concurrent languages

He finds the fork operator especially important to handle

Concentrates on process equivalence, which is usually a
bisimulation. This needs to be a congruence as well.

Besides equational reasoning, develops modal logic for specification,
based on Hennessy-Milner logic

Building on ExtendedML, he creates Extended Concurrent ML



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Concurrency semantics: Extended Concurrent ML
The third branch includes further elaboration of the specification
language for CML.We consider the work presented in this thesis
of major importance for such future work.

In order to provide a useful specification logic, many examples
have to be written, possibly suggesting modifications of the logic
proposed here. Also, a proof theory needs to be defined including
proof rules.

Finally, proofs cannot be done solely by hand, so a proof theory
must be supported by software tools. One cannot hope for a fully
automatic theorem prover for a language like ECML, but one can
hope for a user-driven proof-support involving editing, proof
checking, and automated theorem proving in particular simple
cases.

Havelund: The Fork Calculus, PhD Thesis



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Concurrency semantics: other authors

Mosses andMusicante: An action semantics for ML concurrency
primitives

Amadio, Leth, Thomsen: From a concurrent lambda-calculus to the
pi-calculus

Debbabi and Bolignano: A semantic theory for ML higher-order
concurrency primitives

Jeffrey, Ferreira, Hennessy and Rathke: a number of papers



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Concurrency semantics: Priami PhD Thesis

Priami: Enhanced Operational Semantics for Concurrency, PhD
Thesis

From an algebraic point of view the main difference between truly
concurrent and interleaving semantics concerns the constructors
which model the parallel composition of processes.

Within interleaving theories these constructors can be always
expressed as a combination of other operators of the language not
modelling parallel composition. The combination yields the well
known expansion law. In other word, parallel composition is a
derived operator.

On the other hand, non interleaving theories assume parallel
composition as a primitive operator, i.e. they cannot be expressed
as combinations of other constructors of the language.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Concurrency semantics: small or big-step

Traditionally, concurrency is modelled using small-step operational
semantics as a concurrent computation does not necessarily lead to a
final value, what is the thought behind big-step semantics. Uustalu
debates this stance:

First, big-step operational semantics can handle divergence as
well as small-step semantics, so that both terminating and
diverging behaviors can be reasoned about uniformly.

Big-step semantics that account for divergence properly are
achieved by working with coinductive semantic entities
(transcripts of possible infinite computation paths or
nonwellfounded computation trees) and coinductive evaluation.

Uustalu: Coinductive big-step semantics for concurrency



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Concurrency semantics: small or big-step cont’d

Second, contrary to what is so often stated, concurrency is not
inherently small-step, or at least not more inherently than any
kind of effect produced incrementally during a program’s run (e.g.,
interactive output).

Big-step semantics for concurrency can be built by borrowing the
suitable denotational machinery, except that we do not want to
use domains and fixpoints to deal with partiality, but
coinductively defined sets and corecursion.

Uustalu: Coinductive big-step semantics for concurrency



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Tool: the theorem prover Isabelle

Proven track record: Archive of Formal Proofs

The seL4 formally verified microkernel, 9000 lines of C code

Supports coinduction and corecursion

Large and helpful community



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Tackling languages with binders: Nominal Isabelle

In λ-calculus, λx.x =α λy.y

an orderly exchange of bound variables: α-equivalence

a general theory of this: Pitts: Nominal Sets

an implementation of this: Nominal Isabelle by Christian Urban

relevant application for me:

Parrow, Borgström, Eriksson, Gutkovas, Weber: Modal Logics for
Nominal Transition Systems



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Research plan

Learning the tools: Isabelle and Nominal Isabelle

Pilot project: verifying basic abstract machines in Isabelle

Open research: evaluate various concurrency semantic methods

Create a specification language for CML programs, following
temporal logic and Havelund’s Extended CML

Implement a program verifier with a chosen semantic method

Develop case studies

Write up



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Questions?


