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Abstract

In this paper we continue exploring a recently introduced �nancial market
model in which boundedly rational agents follow technical and fundamental
trading rules to determine their orders. Amongst other things, our model reveals
that interactions between heterogeneous speculators can generate interesting
boom-bust cycles. In addition, we provide an extensive analytical treatment of
the model�s underlying dynamical system, which is given by a one-dimensional
discontinuous piecewise-linear map. One result is that we detect a period-adding
bifurcation sequence, implying the existence of in�nitely many stable cycles.
Moreover, we analytically determine the parameter space that yields stable,
cyclical and chaotic asset price �uctuations.

Key words and phrases. �nancial crises, bull and bear dynamics, discontin-
uous piecewise smooth map, border-collision bifurcation, adding scheme.

1 Introduction

Financial market models with heterogeneous interacting agents have proven to
be quite successful in explaining the complex behavior of asset prices. For re-
cent surveys of this burgeoning �eld of research see, for instance, Chiarella et
al. (2009), Hommes and Wagener (2009), Lux (2009, 2010) and Westerho¤
(2009). These models mainly focus on the interactions between traders who fol-
low di¤erent trading strategies. As is well known from survey studies (Menkho¤
and Taylor 2007) and laboratory experiments (Hommes et al. 2005), �nancial
market participants rely on both technical and fundamental trading rules to
determine their investment positions. Recall that technical trading rules try to
pro�t from extrapolating price trends. By trading in the direction of the current
price trend, these rules apparently add positive feedback to the price dynamics
and are thus likely to be destabilizing. In contrast, fundamental trading rules
bet on a convergence between prices and fundamental values. Since these rules
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tend to add a negative feedback to the price dynamics, they are often regarded
as stabilizing.
Note that most models in this area are nonlinear and thereby have the poten-

tial to generate complex endogenous dynamics. In fact, many models provide
sound economic arguments for a time-varying market impact of destabilizing
technical and stabilizing fundamental trading rules. The dynamics of these
models may � in a stylized way � evolve as follows. Suppose that technical
traders, also called chartists, dominate the market close to the fundamental
value. Their orders drive the price away from the fundamental value, and a
bubble path is traced out. As mispricing increases, fundamentalists become in-
creasingly active (e.g. due to higher expected trading pro�ts). Eventually they
dominate the market and their orders push prices back towards fundamental
values. If mispricing is corrected, however, fundamentalists may become inac-
tive again enabling technical traders to trigger a new bubble again. The price
pattern repeats itself, typically in an intricate (chaotic) way. Some prominent
models featuring this and related mechanisms include Day and Huang (1990),
Chiarella (1992), De Grauwe et al. (1993), Lux (1995), Brock and Hommes
(1998), Chiarella et al. (2002), Westerho¤ and Dieci (2006) and Franke (2009).
In this paper, we explore an asset pricing model recently proposed by Tra-

montana et al. (2010a) in which the trading behavior of heterogeneous agents
constitutes a simple one-dimensional discontinuous map. To be more precise,
the model contains �ve types of agents. Besides a market maker, who adjusts
prices with respect to excess demand, there are two types of technical and two
types of fundamental traders, who follow their pertinent trading strategies. The
reason for having two types of technical and two types of fundamental traders,
a novel and distinguishing feature of this model, is that some of them determine
the size of their orders using linear trading rules while others always trade the
same amount of assets. It is precisely this assumption that makes the model
piecewise linear and preserves its analytical tractability. The shape of the map,
i.e. its two slope and two o¤set parameters, depends on the underlying parame-
ter setting, which, in turn, characterizes the agents�trading behavior. Despite
the simplicity of the model, it o¤ers a surprisingly large number of interesting
scenarios which may give rise to rich, fascinating and di¤erent dynamics.
Here we seek to continue this line of research. One of our goals is to investi-

gate the dynamics of this model from an economic perspective. For instance, we
try to understand the emergence of boom and bust cycle dynamics via market
partecipants�trading decisions. Interestingly, the story we can extract from this
exercise di¤ers at least to some degree to the (standard) story outlined above.
Given the danger emanating from the current �nancial market crisis, we believe
it is quite important to improve our understanding of such disastrous boom-bust
cycle phenomena. Another goal is to provide a full analytical treatment of the
underling dynamical system. Note that we are entering terra incognita at this
point since such maps have not yet been thoroughly studied (as far as we are
aware, our map has not received any attention so far in the range considered
here). We hope that our mathematical insights may prove helpful for other
scholars who are studying similar dynamical systems.
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Let us �rst give a few �nal technical remarks. The two slope and two o¤set
parameters of our map depend on the aggressiveness of the four trader types we
consider in our model. Their precise meaning will be explained in later sections
� here it is su¢ cient to realize that all four parameters are unrestricted, i.e.
they can be positive or negative. Tramontana et al. (2010a) focus on situations
in which both branches of the piecewise-linear model have either positive or
negative slopes while the o¤sets have opposite signs. In Tramontana et al.
(2010b), we started to explore situations where the left branch of the map has a
positive slope, the right branch of the map has a negative slope, and both o¤set
parameters are positive. As it turns out, however, the dynamics of the model
depends crucially on the relative size of the two o¤set parameters. In this paper,
we continue our analysis by analyzing an unexplored parameter constellation. At
�rst sight, this may appear as a rather special endeavor. However, our analysis
reveals that this constellation is rather fascinating from both an economic and
a mathematical perspective.
The cases already covered in Tramontana et al. (2010b) are associated with

bifurcation structures of the so-called period-increment type, which are also
associated with the phenomenon of bistability, i.e. there are two coexisting at-
tractors. Only unique attractors exist for our new parameter setting . Indeed,
the system is characterized by in�nitely many stable cycles with periodicity
regions that follow the so-called "period-adding" structures, a terminology in-
troduced by Avrutin and Schanz (2006), Avrutin et al. (2006) and Gardini et al.
(2010). Besides in�nitely many stable cycles, we can also observe a convergence
towards a unique steady state or chaotic asset price motion. It is worth noting
that we are able to determine analytically for which parameter combinations all
these dynamical features occur, i.e. we derive a more or less complete mathe-
matical analysis of the underlying dynamical system (which can then again be
interpreted in economic terms).
The main point in the analysis of non-smooth systems is the occurrence of

border collision bifurcations (BCB), due to the merging (or collapse) of some
invariant set (a �xed point, a periodic point of a cycle, or the boundary of any
invariant set) with the kink point at which the function changes its de�nition.
A border collision bifurcation, a term coined by Nusse and Yorke (1992) and
Nusse et al. (1994), is a global bifurcation since it depends on the shape of
the map on "the other side" of the collision and may lead to several interesting
dynamic e¤ects that are impossible in the framework of smooth systems. For
example, the dynamics can change directly from an attracting �xed point to an
attracting cycle of any period or to chaotic dynamics (Maistrenko et al. 1993,
1995, 1998 and Banerjee et al. 2000)1 . Obviously, such a bifurcation can have
severe economic consequences. For instance, a stable �nancial market may turn
into a highly volatile market if speculators change their behavior slightly.
Work associated with discontinuous maps commenced several years ago, and

some results have recently been rediscovered. We mention, for example, Mira
1Moreover, the type of chaos in our paper may be regarded as true or as strict (Day and

Pianigiani 1991) and robust chaos (Banerjee et al. 1998) since it is persistent as a function of
the parameters.
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(1978, 1987), and Gardini et al. (2010). In Avrutin et al. (2010) the authors
apply and extend the pioneering works of Leonov, conducted as early as at the
end of the 1950s (Leonov 1959, 1962).
Our work is organized as follows. In Section 2, we present our �nancial mar-

ket model. In section 3, we recall some of our previous results and contrast them
with our new �ndings. In Section 4, we analytically establish the BCB curves
associated with the period-adding structure, which gives rise to in�nitely many
periodicity regions of stable cycles, and show that no coexistance of stable cycles
can occur. Moreover, we shall see that, in the parameter space, a particular set
(whose equation is explicitly known) separates the region of regular dynamics
(without chaotic behavior) from that of only chaotic behavior. In Section 5, we
discuss how the model functions and the emergence of boom-bust cycles from
an economic perspective. Section 6 concludes.

2 The �nancial market model

In this section, we recapitulate the model proposed in Tramontana et al. (2010a),
which gives rise to a simple one-dimensional discontinuous map. In addition,
we clarify the economic meaning of our underlying parameter setting, which is
responsible for the shape of the map discussed later in this paper. Overall, the
model contains �ve types of agents: a market maker, two types of chartists and
two types of fundamentalists. The main decisive features of our model are as
follows. First, some agents (called type 1 chartists and type 1 fundamentalists)
determine their orders by applying linear trading strategies while other agents
(called type 2 chartists and type 2 fundamentalists) always trade �xed amounts
of assets. Second, the agents�trading intensities depend on whether the market
is over- or undervalued. The remaining building blocks of the model, describing
the (general) behavior of the market participants, are standard: market makers
mediate transactions out of equilibrium and adjust prices, chartists chase price
trends and fundamentalists place orders on mean reversion.
Let us start with the market maker. As usual, the market maker collects all

individual orders from traders and changes prices with a view to excess demand.
For instance, if buying orders exceed selling orders, the market maker increases
the price (and vice versa). For this reason, the log of price P for period t+ 1 is
quoted as

Pt+1 = Pt + a(D
C;1
t +DC;2

t +DF;1
t +DF;2

t ); (1)

where a is a positive price adjustment parameter, DC;1
t and DC;2

t are the orders
of the two types of chartists, and DF;1

t and DF;2
t are the orders of the two types

of fundamentalists, respectively. For simplicity, we set a = 1. Given that a is a
scaling parameter, this assumption goes without loss of generality.
Chartists believe in the persistence of bull and bear markets. They therefore

optimistically (pessimistically) buy (sell) assets if the current asset price is above
(below) its fundamental value. Let F be the log of the fundamental value. Then
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the orders placed by type 1 chartists are formalized as

DC;1
t =

�
c1;a(Pt � F ) if Pt � F > 0
c1;b(Pt � F ) if Pt � F < 0

; (2)

where c1;a and c1;b are positive reaction parameters, indicating how aggressively
type 1 chartists react to observed trading signals. The orders placed by type 2
chartists are captured by

DC;2
t =

�
c2;a if Pt � F > 0
�c2;b if Pt � F < 0

; (3)

where c2;a > 0 and c2;b > 0 indicate the amount of traded assets. For instance,
in a bull market, type 1 chartists ask for c1;a(Pt�F ) assets while type 2 chartists
demand c2;a assets.
Fundamentalists believe that prices may disconnect from their fundamental

values in the short run but that there is some exploitable mean reversion ten-
dency in the long run. They therefore bet on a convergence between prices and
fundamental values. The orders placed by type 1 fundamentalists are given as

DF;1
t =

�
f 1;a(F � Pt) if F � Pt > 0
f 1;b(F � Pt) if F � Pt < 0

; (4)

where f1;a and f1;b are positive reaction parameters. The orders placed by type
2 fundamentalists are expressed as

DF;2
t =

�
f 2;a if F � Pt > 0
�f 2;b if F � Pt < 0

; (5)

where f2;a and f2;b are positive reaction parameters. Both types of fundamen-
talists submit buying (selling) orders when the market is undervalued (over-
valued). However, type 1 fundamentalists increase their order size with the
observed mispricing while type 2 fundamentalists trade �xed amounts of as-
sets. Note also that fundamentalists� beliefs in the future direction of prices
are exactly opposite to what chartists expect, a powerful simplifying model as-
sumption, going back to the pioneering work of Day and Hunag (1990), and
recently empirically supported by Boswijk et al. (2007) and Westerho¤ and
Franke (2009).
Although we need eight parameters to describe the behavior of the four

di¤erent groups of speculators, the model�s dynamical system can conveniently
be simpli�ed. For this reason, let us �rst de�ne sR = 1 + c1;a � f1;b, sL =
1 + c1;b � f1;a, mR = c2;a � f 2;b and mL = f 2;a � c2;b. Introducing also the
auxiliary variable ePt = Pt � F , the �nancial market model can be expressed
in terms of deviations from fundamental values. Rearranging (1) to (5) and
making use of our de�nitions yields

ePt+1 = ( sR ePt +mR if ePt > 0
sL ePt +mL if ePt < 0 : (6)
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Finally, using x0 = ePt+1 and x = ePt, we obtain:
x0 = T (x) =

�
fL(x) = sLx+mL if x < 0
fR(x) = sRx+mR if x > 0

(7)

which comprises a family of one-dimensional discontinuous piecewise-linear maps.
The shape and thus the dynamics of (7) depends crucially on the size of

the four (aggregated) slope and o¤set parameters. There is a surprisingly large
number of di¤erent scenarios associated with (7), leading to intricate dynamics,
a few of which have already been covered. In Tramontana et al. (2010a), we
focus on a setup in which type 1 chartists are always dominated by type 1
fundamentalists while simultaneously type 2 chartists always dominate type 2
chartists (or viceversa). Formally, this implies that the two slope parameters
are either both positive or both negative, and that the o¤sets have opposite
signs.
In Tramontana et al. (2010b) and in this contribution, we break with this

kind of symmetry. Now the dominance of one trader type over the other trader
type and the �relative size of dominance�depends on economic circumstances,
that is, whether the market is in a bear or in a bull state. To be precise, the
focus of this paper with respect to the slope parameters is on sR < 0 < sL < 1.
Accordingly, in the bear market the aggressiveness of type 1 fundamentalists
is �slightly�higher than the aggressiveness of type 1 chartists (such that 0 <
sL < 1) while in the bull market it is �much�higher (and such that sR < 0).
Moreover, we assume that both o¤set parameters are positive, which means that
in the bear market, type 2 fundamentalists dominate type 2 chartists while in
the bull market the opposite occurs.
With respect to the o¤set parameters, we can furthermore distinguish three

subcases: (i) mL � mR > 0, (ii) 0 < x�R � mL < mR, and (iii) 0 < mL < x
�
R <

mR, where x�R = mR=(1 � sR) stands for the unique �xed point of our model,
located in the right side of the map (a derivation will be presented in the next
section). The �rst two subcases were investigated in Tramontana et al. (2010b).
Note that mL > mR indicates that the dominance of type 2 fundamentalists
over type 2 chartists in the bear market may be regarded as larger than the
dominance of type 2 chartists over type 2 fundamentalists in the bull market.
Of course, mL < mR implies the opposite. However, in the latter case it is
relevant for the dynamics whether mL is smaller or larger than x�R. Since we
assume in this paper that 0 < mL < x

�
R < mR, this corresponds to a situation

in which the di¤erence in dominance exceeds a certain critical level (i.e. the
distance between mL and mR is rather large).

3 Some properties of our model

The family of maps considered in this paper is indicated by (7), and the restric-
tions we impose on our parameters are given by:

sR < 0 < sL < 1 and 0 < mL < x
�
R < mR; (8)
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where x�R = mR=(1� sR) stands for the �xed point of our model. Accordingly,
we have an increasing straight line for x < 0, a decreasing straight line for
x > 0; and the o¤sets of both branches of the map are positive. One example
of the shape of such a map is shown in Fig. 1a, which also enables us to
identify what kind of asset price dynamics we can, in principle, expect from
our model. Since the slope of the left branch is limited between 0 and 1, there
is no equilibrium on the left side and the iterated points are pushed upwards
and eventually enter the right side. On the right side, however, the slope is
negative and - if the �xed point on the right side is unstable - the trajectory
is forced to return to the left side, after a �nite number of turns around the
unstable �xed point. Then, again on the left side, an increasing price sequence
will recommence and the pattern repeats itself. We can also see that price
movements are always bounded in a natural way, which makes perfect sense from
an economic perspective. We do not observe any exploding price trajectories in
either our model or in real markets. Hence, the model appears to be promising
with respect to explaining boom-bust cycles and excessively volatile prices, as
observed in many real markets.

Fig. 1 Qualitative shape of the discontinuous map.

From Fig. 1a it can be seen again that if we relax the assumption about para-
meter mL, we can discriminate the three di¤erent cases (i), (ii) and (iii) men-
tioned in the previous section. Our attention is on case (iii), i.e. the o¤set
of the left branch is positive but located below the �xed point of the model.
Before we continue, it is worth pointing out that the results and properties de-
termined in the following also hold when the shape of the map is as depicted
in Fig. 1b, due to the symmetry property of f(x) : f(x; sR; sL;mL;mR) =
�f(�x; sL; sR;�mR;�mL):
The equilibrium of our model, determined via fR(x�R) = x

�
R; and given with

x�R = mR

1�sR > 0; is obviously attracting for �1 < sR < 0: A degenerate �ip
bifurcation occurs when sR = �1. For sR < �1 a cycle of period 2 must be of
symbol sequence LR. We determined this cycle and its bifurcation in cases (i)
and (ii). However, such a cycle cannot exist in case (iii). Since fL(0) = mL < x

�
R

, at least two iterations of map fR are necessary to reach the left side again.
Hence, the minimum period for a cycle in case (iii) is 3, with symbol sequence
LR2.
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Due to the simplicity of the model, it is also possible to compute the eigen-
value associated with a given cycle. In fact, a periodic orbit with period
k = p + q, with p points on the L side and q points on the R side, has the
eigenvalue � = spLs

q
R. For example, the eigenvalue of a 3�cycle with sequence

LR2 is given by � = sLs2R:
Let us brie�y sketch the main bifurcation scenarios of cases (i), (ii) and (iii).

We set mR = 3 and mL = 0:15 in the following. However, it should be noted
that our results are generally valid, regardless of the selected numerical values,
as long as the main parameter restrictions are met.

Fig. 2 Two-dimensional bifurcation diagram and its enlarged portion.
Di¤erent colors correspond to stable periodic orbits of di¤erent periods.

In the two-dimensional bifurcation diagram in the parameter plane (sR; sL)
shown in Fig. 2, we can easily identify two typical bifurcation scenarios. On the
one hand, we observe an increasing sequence of periodicity regions of k�cycles,
for any integer k � 1 of type LkR; with period increment by 1, belonging to
the parameter region of case (ii). On the other hand, in Fig. 2b, which is
an enlargement of the right part of Fig. 2a, we have the parameter region
belonging to case (iii). For the assumed values of mL and mR, the region
belonging to case (iii) is the strip between �19 < sR < 0: There is an in�nite
sequence of periodicity regions of stable cycles, whose periods and periodicity
regions follow a period-adding scheme, which can be identi�ed via the Farey
rule. In other words, another periodicity region associated with a cycle of period
p = k1 + k2 also exists, between two existing periodicity regions of periods k1
and k2. Moreover, no coexistence of cycles can occur.
The basic cyles shown in Fig. 2b have the symbol sequence LkR2 for any

integer k � 1, and these cycles are of the so-called �rst complexity level. For this
period-adding scenario we can use a relatively new technique to determine the
analytical bifurcation curves. This techniques stems from an idea introduced by
Leonov (1959, 1962). It has recently been improved by Gardini et al. (2010) to
get an iterative process to calculate families of BCB curves, as we shall see in
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the next section. The white region above the curve denoted by (S) (explicitly
given in Section 4) denotes chaos2 .

Fig. 3 Two-dimensional bifurcation diagram. Di¤erent colors correspond to
stable periodic orbits of di¤erent periods.

Fig. 3 shows a two-dimensional bifurcation diagram in the parameter plane
(sR;mL) from which we can identify two other typical bifurcation scenarios.
The black curve, given by mL = x�R (that is mL = mR=(1 � sR)), separates
the region of case (iii) (below it) from case (ii) (above it). The parameter space
above line mL = 3 belongs to case (i). In the parameter region belonging to
case (ii) we can see an increasing sequence of periodicity regions of cycles of
even periods of type LR2k+1 for any integer k � 0; with period increment by
2 (on the R side)3 . The white region belonging to case (iii), between the curve
of equation mL = x

�
R and the curve denoted by (S), represents the parameter

space associated with chaotic dynamics. Below curve (S), we can see another
period adding scheme, now associated with basic cycles of �rst complexity level
with the symbol sequence LR2k for any integer k � 1:
The analytical equations of the BCB curves associated with the period incre-

ment scenarios of cases (i) and (ii) can be found in Tramontana et al. (2010b).
In the next section, we determine the analytical BCB curves of the periodicity
regions with respect to the period-adding scheme occurring in case (iii).

4 Period-adding scheme

The peculiar thing about case (iii), besides the chaotic region, is the region with
many stable cycles and the so-called period-adding scheme. In this section we

2Here chaos means that the map is invariant in some cyclic intervals, having dense unstable
periodic points and dense aperiodic trajectories.

3Despite being invisible, there are regions of bistability between two consecutive cycles.
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show how to obtain the analytical expressions of the curves that, in the para-
meter plane, separate regions characterizing cycles with di¤erent periodicities.

4.1 Periodic orbits of �rst complexity level

Let us �rst consider Fig. 2b to detect the periodic orbits of �rst complexity level
from which the period-adding scheme can be started. By assumption, we have
mL < x

�
R, so that at the bifurcation value (of a point colliding with x = 0 from

the left side) we have fL(0) = mL < x
�
R. The existent cycle therefore starts with

a periodic point that must do at least two turns around the unstable �xed point
before reaching the L side again. That is, such cycles have the symbolic sequence
given by LkR2; for k � 1. Let us call x0 the point of the cycle immediately
to the left of the discontinuity point x = 0. Then the periodic point x0 of the
orbit of symbolic sequence LkR2 can be obtained by looking for the �xed point
of the function fLk�1 �f2R �fL(x); that is, by solving for fLk�1 �f2R �fL(x) = x.
From:

fL(x) = sLx+mL

f2R � fL(x) = s2RsLx+ s
2
RmL + sRmR +mR

fL
k�1 � f2R � fL(x) = sk�1L [s2RsLx+ s

2
RmL + sRmR +mR] +mL

1� sk�1L

1� sL
we have

x0 =
sk�1L

1� skLs2R
[s2RmL + sRmR +mR +mL�

L
k�1] (9)

and by setting x0 = 0 we have:

BCBlLkR2 : sR =
1

2mL
[�mR �

q
m2
R � 4mL(mR +mL�

L
k�1): (10)

Both branches, due to the � components, are used to draw the BCB curves
in Fig. 4, determining the lower boundary of the periodicity regions shown in the
stable regime (the right side with respect to set (S)), and the upper boundary
in the unstable region (on the left side of the locus (S)).
Then such a cycle exists as long as the periodic point which we have called x0;

the �rst periodic point on the left side of the discontinuity point x = 0, merges
with the preimage of the origin on the left side, i.e. point xL�1 = f

�1
L (0) = �mL

sL
:

The other BCB curves, causing the disappearance of the cycles, are obtained
using the following equation:

x0 = �mL

sL
(11)

sk�1L

1� skLs2R
[s2RmL + sRmR +mR +mL�

L
k�1] = �mL

sL
;

which leads to the following BCB curves:

BCBrLkR2 : sR = �1�
mL

mRskL
� mL

mR
�Lk�1 (12)
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A few of these curves (for k = 1; :::; 8) are shown in Fig. 4, bounding the
regions for the existence of cycles LkR2:

Fig. 4 Numerical periodicity regions in (a) and analytic BCB curves in (b).

We can see from the same �gure that the BCB bounding cycles LkR2 intersect
each other on a straight line of equation

(S) : mL(1� sR)�mR(1� sL) = 0

This bring us to the following property:

Property 1. (S) is the locus in which the eigenvalues of all cycles becomes
equal to 1.
For example, let us consider the intersection point of the BCB curves of

equations given in (10) and (12), bounding the existence region of cycle LkR2

(whose eigenvalue is given by � = skLs
2
R): Parameters that satisfy (10) are such

that (from (9)):

s2RmL + sRmR +mR +mL�
L
k�1 = 0

s2RmL + sRmR = �mR �mL�
L
k�1

s2R
mL

mR
+ sR = �1� mL

mR
�Lk�1

and substituting into (12) we obtain:

sR = �1� mL

mRskL
� mL

mR
�Lk�1

sR = � mL

mRskL
+ s2R

mL

mR
+ sR

skLs
2
R = 1

This proves the property for the cycles of the �rst complexity level. The state-
ment holds also for the BCB curves of the other periodicity regions, proved in a
similar manner, by using the analytical expressions of the BCB curves computed
via the Leonov approach, as described in the next subsection.
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4.2 Periodic orbits of higher complexity levels

As can be seen from the bifurcation diagrams (and as can be also rigorously
proved), the periodicity regions in which stable cycles LkR2 exist are disjoint,
and there are cycles with di¤erent periods in between. The Farey rule also works
here. Let us remark that in the description of the periodicity regions we can
allocate a number to each region, which may be called rotation number, in order
to classify all periods and several cycles with the same period. In this notation,
a periodic orbit of period k is characterized not only by the period but also by
the number of points in the two branches separated by the discontinuity point
x = 0; already denoted by L and R, respectively. We can say that a cycle has a
rotation number qk if a k-cycle has q points on the R side and the others (k� q)
on the L side. Then, between any pair of periodicity regions associated with the
rotation numbers q1

k1
and q2

k2
there also exists the periodicity region associated

with the rotation number q1
k1
� q2

k2
= q1+q2

k1+k2
; where � stands for the so-called

Farey composition rule, or summation rule (see, for example, Hao (1989)).
Then, by using a technique already proposed in Leonov (1959, 1962) and

Mira (1978), (see also Mira (1987) pp. 56-61 and pp. 80-84), we call regions of
�rst level of complexity those associated with the basic cycles LkR2 for k � 1:
Between any pair of consecutive regions of �rst level of complexity, say with
rotation numbers 2

k1
and 2

k1+1
; we can then construct two in�nite families of

periodicity regions, called regions of second level of complexity, via the sequence
obtained by adding using the Farey composition rule � iteratively the �rst one
or the second one, i.e. 2

k1+1
� 2

k1
= 4

2k1+1
; 4
2k1+1

� 2
k1
= 6

3k1+1
; 6
3k1+1

� 2
k1
=

8
4k1+1

; :::and so on, that is:

2q

qk1 + 1
for any q > 1

and 2
k1
� 2
k1+1

= 4
2k1+1

; 4
2k1+1

� 2
k1+1

= 6
3k1+2

; 6
3k1+2

� 2
k1+1

= 8
4k1+3

:::; that is:

2q

qk1 + n� 1
for any q > 1;

which give two sequences of regions accumulating on the boundaries of the two
starting sequences.
Clearly, this mechanism can be repeated: we can construct two in�nite fam-

ilies of periodicity regions, called regions of third level of complexity, between
any pair of contiguous regions of second level of complexity, for example 2q

qk1+1

and 2(q+1)
(q+1)k1+1

; the sequence obtained by adding using the composition rule �
iteratively the �rst one or the second one, and so on. In this way, we obtain all
of the in�nitely many periodicity regions.
We notice that, although we see periodicity regions �lling the section on the

right side of the set (S) up to the stability region of the �xed point, the region
is not �lled by the existence of periodic orbits or the BCB curves. Some points
in between are left, the complementary set, which is a set of zero Lebesque
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measure. Quasiperiodic trajectories (not chaotic, as no Cantor set of points can
exist) correspond to such values of the parameters. Similarly, for parameters on
set (S): at a point belonging to the intersection of two BCB curves, the map is
conjugated with a linear rotation with rational rotation number. In the residual
set of parameter values, the map is conjugated with a linear rotation, which has
an irrational rotation number.
Hence, set (S) denotes the change of stability of all cycles on the right side

of the set: although these cycles also exist on the left side, between the curves
with the same equations given in (10) and (12), they are unstable.

4.3 The Leonov technique

The Leonov technique for maps with positive slopes, which has been improved
by Gardini et al. (2010) (and extended by Avrutin et al. (2010)), can also
be used in our context to get an iterative map in the coe¢ cients. This leads
to the analytical equations of also the border collision bifurcation curves of
second complexity level and further levels. To demonstrate the application of
the process, it su¢ ces to notice that, locally, we are in the same situation. If
we consider a parameter point between two consecutive periodicity regions of
cycles of periods LkR2 and Lk+1R2, in a neighborhood of the origin the graph
of function FL(x) = fL

k � f2R � fL(x) for x < 0 and the graph of function
FR(x) = fL

k � f2R(x) for x > 0 is that shown in Fig. 5, which is the standard
situation in which the adding scheme works. Thus, considering map F (x) as
de�ned accordingly, we can apply the iterative process described by Gardini et
al. (2010).

Fig. 5 Qualitative shape of the iterated functions in a neighborhood of the
origin, FL(x) = fLk � f2R � fL(x) for x < 0 and FR(x) = fLk � f2R(x) for x > 0.

That is, consider the operator for the coe¢ cients de�ned by

x0 = F (x) =

�
FL(x) = ALx+ML ; if x < 0
FR(x) = ARx+MR ; if x > 0

(13)
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where, to determine the BCB curves of the second level, we consider FL(x) =
fL

k � f2R � fL(x) and FR(x) = fLk � f2R(x); so that we have

AL = sk+1L s2R (14)

AL = skLs
2
R

ML = skL[s
2
RmL + sRmR +mR +mL�

L
k�1 +mL�

L
k ]

MR = skL[sRmR +mR +mL�
L
k�1 +mL�

L
k ]

We then obtain one second-level family by considering functions FnR � FL(x) =
AnRALx +MLA

n
R +MR

1�An
R

1�AR
for n � 1: The periodic point x� of T (x) (of the

cycle with symbolic sequence (LkR2)n Lk+1R2), which is the �rst on the left of
the origin, is given by:

MR � x� =
1

1�AnRAL
[MLA

n
R +MR

1�AnR
1�AR

] � 0; (15)

and we obtain the BCB curves from equations MR = x
� and x� = 0:

Fig. 6 In (a) periodicity regions of the second complexity level. In (b) enlarged
part of the leftmost corner of Fig. 2b.

The second family is obtained in a similar manner, by considering functions
FnL � FR(x) = AnLARx+MRA

n
L +ML

1�An
L

1�AL
for n � 1: The periodic point x� of

T (x) (of the cycle with symbolic sequence (Lk+1R2)n LkR2), which is the �rst
on the right of the origin, is given by:

ML � x� =
1

1�AnLAR
[MRA

n
L +ML

1�AnL
1�AL

] � 0 (16)

and we have the BCB curves from equations ML = x
� and x� = 0:

The two second-level families can be seen in the enlargement of Fig. 6a
for k = 2, the �rst one accumulating to the periodicity region of cycle LkR2

and the second family accumulating on Lk+1R2, and so on, iteratively. We can
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construct two in�nite sequences of periodicity regions between any two pairs of
consecutive regions in a similar manner.
Moreover, as we have seen from Fig. 3, there are other families of stable

regions following the period-adding scheme, all of which can be detected using
the procedure described in this section. Another example is in the enlarged part
of the leftmost corner of Fig. 2b, shown in Fig. 6b: it reveals that a sequence
of in�nitely many regions also exists below the periodicity region of the 3�cycle
LR2, with cycles of the �rst complexity level which have the symbol sequence
(LR2)kR2 for k � 1, and the related adding scheme.

4.4 The locus S

We note that the existence of set (S) and its special role has already been
described by Gardini et al. (2010), associated with the same map, but in a
regime with positive slopes only, in which the adding scheme applies to the
periodicity regions of principal (or maximal) cycles. In that case, it was a
separator between regions with only stable cycles or quasiperiodic orbits or only
chaos. Set (S) plays the same role in our case (iii), since all cycles are stable
on one side of (S) and all are unstable on the other side. We can thus conclude
that on one side of (S) we have stable cycles or quasiperiodic trajectories; on
the other side of (S) we have pure and robust chaos.

Fig. 7 Two bifurcation diagrams at �xed values mL = 0:15 and mR = 3: In (a)
sR = �3; in (b) sR = �13:

We close this section by showing two bifurcation diagrams of the state variable
x as a function of the left slope sL: A comparison of the two diagrams reveals
that the lower slope sR, the shorter the interval of regular dynamics and the
earlier chaotic dynamics occur. However, some regularity can also be detected
in the chaotic regime. For instance, once the state variable is pushed into the
L region, it always increases. This can also be seen in Fig. 8, which we discuss
in more detail in the next section.
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5 Boom-bust cycles

The dynamics depicted in Fig. 8 are quite appealing from an economic per-
spective and, fortunately, our model allows us to comprehend them. We focus
for concreteness on the left panel and recall that our �nancial market model is
formulated in terms of deviations from the fundamental value. As can be seen,
the panel reveals the emergence of signi�cant boom-bust cycles. We are now
ready to explore step-by-step what is driving the dynamics within our model.
Let us start our analysis with a situation in which the market is deep in

bear territory. While chartists are depressed and consequently submit selling
orders, fundamentalists believe that the market is undervalued and perceive
pro�table buying opportunities. Since both type 1 and type 2 chartists are
dominated by type 1 and type 2 fundamentalists, positive demand pressure
drives the price upwards. This process continues for a few time steps, and the
strong underpricing is corrected. However, the price increase starts to slow
down as the market converges towards the fundamental value. Since the price
adjustment of the market maker is proportional to excess demand, the reason
for this is also quite clear. Due to the reduction of mispricing, both type 1
chartists and � in particular � type 1 fundamentalists receive weaker trading
signals, and their orders diminish, easing the upwards price pressure.

Fig. 8 versus time trajectories at foxed values mL = 0:15; mR = 3 and
sL = 0:9: In (a) sR = �3; in (b) sR = �13:

However, the orders of type 2 traders remain constant. A dominance of
type 2 fundamentalists over type 2 chartists eventually pushes the price into
the bull region. It should be noted that at this moment the behavior of type 2
fundamentalists is destabilizing. Clearly, their orders trigger an overshooting of
the fundamental value. Once the price is above its fundamental value, chartists
change their attitude from pessimistic to optimistic. Since we have assumed that
type 2 chartists dominate type 2 fundamentalists in such a market environment,
a positive excess demand accumulates and prices strongly increase. This leads to
a collapse in the market. Since type 1 fundamentalists strongly dominate type
1 chartists and since the market is now more overvalued than in the previous
time step, the excess demand of type 1 traders is (quite) negative and clearly
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overcompensates the still positive excess demand of type 2 traders. We therefore
observe a substantial crash. The more type 1 fundamentalists dominate type
1 chartists, the deeper the crash. The behavior of fundamentalists thus once
more appears ambiguous with respect to market e¢ ciency, which is, in general,
a rather surprising and notable �nding. After the market has crashed, chartists
sell assets while fundamentalists buy assets. As just described, the market
recovers, �rst quickly but then at a slower pace.
Note that the strong price increase immediately prior to the collapse of the

bubble is typical for many �nancial market crises witnessed in the past. We
�nd it quite remarkable that our model is able to mimic this feature and that
it o¤ers an explanation for this phenomenon: just before the crash, there is a
strong buying pressure from optimistic chartists while at the same time there
are basically no stabilizing orders from fundamentalists which would be able to
balance the excess demand and counter the price increase. Also the consequent
abrupt, sharp market crash can be observed in the real world. Within our
model, such extreme price drops are caused by fundamentalists who bet (too)
aggressively on mean reversion.

6 Conclusions

In this paper we considered a piecewise linear discontinuous map with an in-
creasing branch on the L side, a decreasing branch on the R side, and two
positive o¤sets, representing the interactions of heterogeneous traders in a sim-
ple �nancial market model. We determined the border collision bifurcation
curves leading to the existence of in�nitely many stable cycles, and described
period-adding schemes. In addition, we demonstrated that there can only be
one attracting set, which may either be a cycle (whose period may be associated
with in�nitely many rotation numbers) or chaotic motion.
From an economic perspective, we conclude that our model delivers a plau-

sible story for the emergence of boom-bust cycles which di¤ers, at least to
some degree, from the (standard) story reported in the introduction. Of course,
our model is stylized and many relevant aspects are missing, but, given the
importance of this topic, we consider it important to further our knowledge
of what may drive the dynamics of �nancial markets. Amongst other things,
our model highlights the ambiguous role of fundamentalists during the course
of boom-bust cycles and the appealing implications of discontinuous dynami-
cal systems brought about by simple heterogeneous trading rules of boundedly
rational agents, leading to potentially momentous regime shifts. It would be
interesting to calibrate this model such that it matches the stylized facts of
�nancial markets more closely. This will probably require the inclusion of ex-
ogenous disturbances. We hope that the analysis of the deterministic skeleton
of such a stochastic model may prove helpful for this important challenge.
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