
 

 
 
 
 
 

Please cite as follows 
 
Kiefer, P., Matyas, S. (2005). The Geogames Tool: Balancing spatio-temporal design parameters in 
location-based games, In: Mehdi, Q., Gough, N. (eds.): Proceedings of the 7th International 
Conference on Computer Games: Artificial Intelligence, Animation, Mobile, Educational and Serious 
Games (CGAMES 2005), Nov.28-30, 2005, Angoulême, France, Univ. of Wolverhampton, School of 
Comp. and Inf. Techn., pp. 216-222 

THE GEOGAMES TOOL: BALANCING SPATIO-TEMPORAL DESIGN 
PARAMETERS IN LOCATION-BASED GAMES  

 
Peter Kiefer and Sebastian Matyas 

 Laboratory for Semantic Information Processing  
Otto-Friedrich-University Bamberg 

96045 Bamberg, Germany 
{peter.kiefer, sebastian.matyas}@wiai.uni-bamberg.de 

 
 
KEYWORDS 
Mobile gaming, game design tool, game balancing, spatio-
temporal MinMax algorithm, location-based games 
 
ABSTRACT 
 
Taking advantage of the full potential of mobile gaming, 
location-based games let the player totally immerge in the 
game experience through physical movement of the whole 
body (locomotion) in an outdoor environment. Although this 
offers a variety of new possibilities to the game designer, the 
task of balancing a location-based game to be fair and 
challenging is nearly unsolvable with traditional methods 
from video game design: The real world setting neglects play 
testing and leaves only “offline” methods from game theory 
as a possible solution. The real-time aspect of concurrent 
moves and the spatial aspect of a real-world game board pose 
new problems for a game theoretical analysis. We propose a 
spatio-temporal MinMax algorithm as a solution for these 
problems. Our algorithm is embedded in a tool for balancing 
the spatio-temporal parameterization of a certain subclass of 
location-based games called “geogames”, allowing a game 
designer to evaluate value ranges for a challenging location-
based game. 
 
INTRODUCTION 
 
Although mobile gaming promises to the game designer a 
whole new world to play with (Aarseth, 2003), most of 
today’s games for mobile devices are still mainly adoptions 
of single-player computer games. These games, even though 
restricted in computational power, graphics and I/O, are good 
for killing one’s time while waiting for the train or standing 
in line. But while these standard mobile games disregard 
main features of mobility, location-based games make use of 
localization technology like GPS and build the player’s 
current position and motion path into the game. Moving and 
acting in an outdoor environment involves the player through 
physical movement of the whole body (locomotion) and lets 
him or her totally immerge into the gaming experience; 
prominent examples are Can You See Me Now in Flintham et 
al. (2003) or Botfighters in Sotamaa (2002).  

 
One major problem in the design of location-based games 
consists in balancing the various parameters influencing the 
course of the game. In general, a balanced game design 
involves two aspects: On the one hand, a game should be fair 
and favor none of the players by default. On the other hand, a 
fair game that always ends in draw is fair but boring, so the 
second demand is to make the game challenging. Both of 
these aspects will be addressed in our paper. 
 
Traditionally, a balanced design of video games is achieved 
through repeatedly play testing the game with test users in 
parallel runs until no more unfair conditions are detected. 
Obviously, this process is not practicable for location-based 
games because parallel test runs in the real world turn out to 
be difficult (or even impossible) given the size of the game 
area. For most location-based games the game area is not 
smaller than the area of a town; see CityPoker in Kiefer et al. 
(2005) for an example. To solve this problem, we suggest 
game balancing to be addressed “offline” before playing on 
the streets. For classic board games, game theory provides 
the right tools to analyze the entire game state for fairness. 
However, location-based games pose two problems for a 
game theoretical analysis. First, algorithms like the 
widespread MinMax algorithm (see Russell and Norvig, 
2003) are well suited for turn-based games but are not able to 
handle concurrent move decisions in real-time games. 
Second, game theory neglects the spatial dimensions of the 
game board, because in board-games every possible move 
costs the same amount of time and physical effort. In 
location-based games, however, a player should deliberate 
thoroughly whether to invest the time and effort of moving to 
a very far location. Accordingly, a game theoretical analysis 
for location-based games should integrate the spatial 
dimension of the game board. 
 
The contribution of this paper consists in a tool for balancing 
a class of location-based games, called geogames, first 
introduced in Schlieder et al. (2005), which enables a game 
designer to balance his game “offline”. This tool uses an 
extended MinMax algorithm to handle the spatio-temporal 
parameters involved in the design of geogames. To illustrate 
the design process, we use GeoTicTacToe, also introduced in 
Schlieder et al. (2005), as our running example. We will 

 



 

evaluate two scenarios and the corresponding design 
parameter values for challenging game design settings. 
 
The structure of this paper is as follows: In section 2 we 
summarize Schlieder et al. (2005) with the definition of 
geogames and use the example of GeoTicTacToe to explain 
the problems arising when creating location-based games 
from classic board-games. Section 3 introduces the spatio-
temporal MinMax algorithm and gives a description of the 
geogame tool architecture. With this tool, two scenarios of 
GeoTicTacToe are analyzed in section 4 to illustrate how a 
game designer can balance the spatio-temporal parameters of 
a geogame. In the last section we conclude with a discussion 
of related work and an outlook on future research.  
GEOGAMES FRAMEWORK 
 
Designing fair and challenging location-based games is not a 
trivial task. In Schlieder et al. (2005) a location-based game 
is considered challenging, if it equally demands the players’ 
acting and reasoning skills to win the game. Consequently, 
neither a pure chase game nor a live version of chess would 
fulfill this definition.  
 
A transition of classic board games into location-based 
games, named spatialization, provides a rich pool of 
challenging games, if one major problem is being solved. In 
the line of Nicklas et al. (2001), “lifting turn-based 
restrictions can make a game unfair“, consider a location-
based variant of TicTacToe displayed in Figure 1. Like in the 
classic board game two players, X and O, are trying to place 
three marks, X or O, in a row, a column or one of the two 
diagonals to win the game. Note that in the location-based 
variant, GeoTicTacToe, the game board is split on separate 
geographic locations not necessarily maintaining the 
appearance of the classic game board, see Figure 5. 
Furthermore, we determine for Figure 1 that player X moves 
significantly faster than player O.  
 
Without turn-based restrictions this leads to a simple winning 
strategy for player X and lets the game deteriorate to a non-
challenging race: Player X can simply run from location 1 
over 4 to 7 without player O having any chance to hinder 
him from winning the game. 
 
A surprisingly simple solution is proposed. To design a 
challenging geogame a game designer must include a 
synchronization time interval (syncTime) in his rule set. 
Players now must wait at a location until the syncTime is 
over before they can move again. This syncTime parameter 
must be chosen individually for each geogame to keep it 
challenging. SyncTime does not necessarily have to be 
implemented directly as idle wait time, but can also be 
integrated indirectly through other game elements. Think, for 
example, of solving mini games before moving on or 
searching for elements hidden on the real-world game board, 
e.g. for playing cards in CityPoker (Kiefer et al., 2005). 
 

 
 

Figure 1: Spatial version of TicTacToe 

    
Geogames are a special class of location-based games with 
common game elements, defined in the following way: A 
fixed number of players move between a fixed number of 
locations taking up and putting down resources when they 
reach a new location. A resource can be anything that the 
players can pick up and dispose at another location, 
including virtual resources, like the X and O-marks in 
GeoTicTacToe. However, resources cannot move around 
without any involvement of a player, which is one basic 
constraint for geogames (spatial coherence). The state of a 
game is defined by the players’ locations and the distribution 
of resources over players and locations. Actions describe the 
transitions between game states. A second constraint 
(temporal coherence) asserts that performing an action needs 
time at least as long as the synchronization interval. For a 
formal definition see Schlieder et al. (2005).  
 
From the spatial and temporal coherence two design 
parameters for geogames can be derived. Spatial coherence 
assures that the players actually move through the game area. 
As shown in the example of Figure 1, the difference in 
physical ability, measurable as speed, can alter the challenge 
of the game dramatically. This phenomenon can be observed 
on town or football sized game boards as well as backyard 
sized ones and is not a problem of different arrangements of 
locations and starting points. Therefore the players’ speed 
will be one important parameter for a game designer. We 
measure the players’ speed by the time they need to move 
from one location to another. Temporal coherence includes 
the syncTime parameter, which addresses the real-time 
aspect of geogames. It is the second important design 
parameter for a game designer, as we already have seen in 
the example of Figure 1. For different constellations of these 
two parameters a location-based game is considered to fall 
into one of three categories: either a race game, in which 
being faster is the only strategy for winning, a board-game 
with strictly alternating move behavior and exclusive 
emphasis on reasoning, or a challenging geogame, where 
winning demands both, a good strategy and good physical 
abilities. Parameter values defining a challenging geogame 
are of most interest for a game designer. An example of a 
challenging game play style of GeoTicTacToe will be 
demonstrated at the end of section 4. 
 
GEOGAMES TOOL 
 

 



 

The geogames tool helps the game designer in tuning his 
location-based game to a challenging location-based game. 
Any location-based game that is an instance of the geogames 
class can be analyzed with the following steps: 1) Map the 
location-based game to the geogames framework. 2) 
Determine the main parameters that are decisive for the 
excitement of the game (like syncTime). 3) Explore the 
parameter space by running the geogames tool for different 
parameter combinations and finally: 4) Choose a parameter 
combination that is likely to make up a challenging game. 
 
In the remainder of this section we show how to map a 
location-based game to the geogames framework, explain the 
spatio-temporal MinMax algorithm, which is the central 
component of the geogames tool, and shortly describe the 
architecture of the geogames tool. 

 

 

Mapping of a location-based game to the geogames 
framework 

In the following we illustrate the ten steps necessary for 
mapping a location-based game to the geogames framework 
with our example GeoTicTacToe and the game board 
displayed in Figure 1. 
 

a) Define the players P. In our case: P = {Px, Po} In 
general the geogames framework and tool allow more 
than two players. 

b) Define the locations L. For GeoTicTacToe we have 9 
locations representing the game board and the two 
starting locations for the players: L = {L1… L9, LX, 
LO}. 

c) Define the resources R. Each mark that a player can 
set in GeoTicTacToe is one resource. At least after 
his sixth mark a player will have three in a row, 
column or diagonal, so each player may set a 
maximum of six marks: R = {X1,…, X6, O1,…, O6}.  

d) Define the movingtimes: L × L × P  IR+, i.e. the 
time players need for moving from one location to 
another. Note that this may vary for each player to 
model fast and slow players. Furthermore, this does 
neither need to be proportional to the Euclidean 
distances, nor symmetrical (e.g. moving up or down a 
hill). For our example of GeoTicTacToe, we assume 
symmetrical movingtimes and the Euclidean 
distances from Figure 1 as time units, e.g. 
movingtimes(L1, L2, PX) = 2.  

e) Define the starting state, i.e. the starting resource 
distribution and the starting location for each player: 
location(Px) = LX, location(Po) = LO, 
resource_pos(Xi) =  PX , resource_pos(Oi) = Po 

f) Define the final condition. If a game state is reached 
that fulfills the final condition, the game ends. In our 
case: All nine locations L1 - L9 contain one resource 
or three resources of the same type (X/O) are in one 
column, row or diagonal. 

g) Define the state evaluation: Each player must have 
an individual evaluation function for comparing the 
final states. For GeoTicTacToe each player prefers a 

winning situation to a draw and a draw to a loss. 
Furthermore, players strive to win preferably early 
(with setting only few marks) and to lose preferably 
late. We call the number of marks that has been set 
when the game ends depth of the game. The final 
state of Figure 1, for example, has a depth of 5. 
Obviously, depth may vary between 3 (one player 
wins before the other could set a mark) and 9 (all 
locations have been marked). 

h) Define the possible change actions, i.e. how players 
may drop and take resources at the locations. In our 
case marks may not be removed, so that players may 
never pick up any resources. They are allowed to 
drop exactly one resource at any location Li 
(i∈{1..9}), but only if that location is empty. LX and 
LO are only starting locations where no actions are 
allowed. 

 
The two main parameters of the game we will vary with the 
geogames tool are: 
 

a) The above-mentioned syncTime, i.e. the time a player 
is forced to wait after changing resources. For small 
syncTime we expect a non-challenging race style of 
game, for high syncTime the game should deteriorate 
into a non-challenging board-game style, according 
to the definition of challenge for geogames in section 
2. 

b) The personal speed-factor describing the difference 
in speed between the players. In our case we model 
Po as a slower player by assuming movingtimes(ly, lz, 
Po) to be movingtimes(ly, lz, PX) multiplied by speed-
factor (for any locations ly and lz).  

 
Note that syncTime is given by the rules and therefore the 
parameter with which the game designer can influence the 
game flow. On the other hand, speed-factor is not induced by 
the rules but underlies the estimations of the game designer, 
e.g. “the difference of speed between the players in my game 
will not be higher than p%”. Certainly, any estimation on 
speed-factor is some kind of simplification, because the 
difference in speed is usually not constant for the entire 
game. Speed-factor rather expresses a medium difference in 
speed. The geogames tool will help in finding rules like “if 
one player is p% slower than the other player, a syncTime of 
s should be chosen to keep the game challenging” or “for a 
given syncTime s, a player needs to be at least p% faster to 
win the game”. Given these rule sets, the game designer can 
determine a region in the spatio-temporal parameter space 
where his geogame will probably remain challenging for a 
predefined syncTime, although he is lacking knowledge 
about the exact speed-factors. 

Spatio-temporal MinMax algorithm 

The central component of our tool is a variant of the standard 
MinMax algorithm. Standard MinMax (see Russell and 
Norvig 2003) explores the game state of a deterministic full-
information two-person game with two players MIN and 
MAX who always move alternately. As mentioned above, 
avoiding strict alternation distinguishes a challenging 
geogame from a board-game style location-based game. 
More precisely, the spatio-temporal parameterization of a 

 



 

geogame decides about the alternation behavior, leading to 
the necessity to integrate spatio-temporal parameters into 
standard MinMax, an algorithm we call spatio-temporal 
MinMax.  
 
This algorithm builds on the following assumptions: Players 
always take the shortest path between locations. They do not 
change destination before arriving at a location and do not 
wait longer than syncTime at any location. The players 
always have full-information on the current game state and 
move optimal in any case. Consequently, players in a 
geogame behave in the following way (Figure 2). They first 
decide which location to move next (several possibilities), 
then they move towards that location and arrive after some 
time. Now they select which resources to change, before they 
finally have to wait syncTime and afterwards move on to the 
next location.  
 
With these assumptions we implement a MinMax analysis 
like illustrated in Figure 3. Each node in the tree is one state 
of the game and each state is described by the distribution of 
resources and the players’ position. A position is a 3-tuple 
consisting of the player’s state (waiting or moving), the 
location where he is waiting (or in state moving the location 
he is heading for) and the time units until end of waiting (or 
until arrival respectively). The player to decide about the 
next action does not alternate like in standard MinMax, but is 
determined by the time units, which introduces the temporal 
aspect into the algorithm. The following rules are applied: If 
no player has time units 0 in his position (everybody is 
waiting or moving), subtract from all positions the minimum 
time units, so that at least one player now has time units 0. If 
exactly one player has time units 0, he is the one to decide. If 
more than one player has time units 0 and they are in state 
moving and heading for the same location – in other words: 
if more than one player arrives at the same location at the 
same time – a dice node is inserted (randomized MinMax 
algorithm, see Kovarsky and Buro (2005)). If more than one 
player has time units 0, but they are at different locations or 
not all in state moving, it does not matter who will decide 
first, so one is selected by chance. 
 

 
 

Figure 2: Behavior sequence of players in geogames 
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Figure 3: Example game state tree 

Our use case holds some simplifying properties: The speed-
factor of 1.1 with the Euclidean distances prevents two 
players from arriving at the same location at the same time, 
so we do not have any dice nodes, in the pictured example of 
Figure 3. Furthermore, when players change resources they 
do not have more than one possibility, namely drop a 
resource (see Figure 3 at t=4), which reduces the branching 
factor. Bottom-up evaluation with depth-first search of 
standard MinMax is applied, whereas the evaluation function 
takes the depth of the game into account (see section 3.1). 
The small state space of TicTacToe allows us to prune 
without a heuristics. Nevertheless, for games with more 
complex state space, the sophisticated pruning strategies that 
have already been developed for board games should be 
applied.  

Architecture 

The geogame tool has a flexible architecture with the layers 
illustrated in Figure 4. 
 

 



 

   
Figure 4: Architecture of the geogame tool 

 
(Heuristic) search mechanism: This layer is a generalization 
of MinMax and can be used for all kinds of MinMax 
problems. Like mentioned above, our implementation 
includes the possibility of dice nodes to handle concurrent 
resource change decisions. This problem does not bother us 
in the use case we analyzed for this paper, so we do not go 
any further into the problem of concurrent resource change 
decisions here. 
 
Geogames engine: This layer defines all concepts of the 
geogame framework and combines them to data structures 
that are taken as input for the underlying search mechanism 
layer. 
 
Concrete geogame: In this layer, we map the rules of a 
concrete game to the geogame framework. Most of the 
parameters of geogames are fixed, for example the number 
of the locations L. 
 
Parameterized concrete geogame: Finally, we are able to 
define different variants of a concrete geogame like different 
coordinates for the locations in GeoTicTacToe or different 
starting card distributions for CityPoker. 
 
 
 
RESULTS 
 
The results we present in this section will clarify the benefit 
of balancing a game with the geogames tool. Figure 5 
displays two GeoTicTacToe game boards with different 
geographic footprints.  
 

 
 

Figure 5: Two spatial variants of GeoTicTacToe 

 
Game board 1 (left) is similar to that of Figure 1 with a 
standard TicTacToe board and two different starting 
locations. Game board 2 (right) is a distorted version of the 
standard board with the four locations 2, 4, 6 and 8 dragged 
away from the center and a common starting location for 
players X and O. We analyzed both game boards with a 
parameterization of syncTime ranging from 0 to 12 in steps 
of 0.5 and speed-factor between 1.01 and 1.20 in steps of 
0.01 and obtained for each test run three results: First of all 
the outcome of the game, X-wins or draw; player O was 
never able to win because of his disadvantage in speed. 
Second one optimal path through the MinMax-tree, i.e. the 
course of the game if both players act optimally. Usually, 
more than one optimal path exists. Third, the number of 
marks that is set if both act optimally, i.e. the depth of the 
game on the optimal path.  
 
The depth of the game for game board 1 is shown in Figure 6 
for all possible parameter settings. We detect three possible 
depths: At depth 5 we have a course of the game like that of 
Figure 1, so we call this area race game. Even though a 
depth of 9 could either be a draw or a win for X, in our 
scenarios a depth of 9 was always associated with a draw, so 
we call the right area board-game, where the players move 
strictly alternately. The challenging geogame we strive to 
achieve can be found in the center at depth 7. Note that 
speed-factor 1.0 (both players have same speed) is not 
displayed. This would make the game end in a draw for 
every value of syncTime, which indicates the fairness of 
TicTacToe. Anyhow, in reality two players will never have 
exactly the same speed and arrive exactly at the same 
moment at a location. 
 
The pictured results help the game designer in tuning his 
game. He can start by making estimation on the physical 
abilities of the players, “the difference in speed between 
players in my game will never be more than 5%”, and 
conclude on the necessary syncTime. In this example, he 
would have to choose a syncTime of at least 3.5, because for 
speed-factor 1.05 the race game ends at syncTime 3.0 and 
the challenging geogame starts at 3.5. Possibly he might 
make an additional demand like “the faster player needs to 
be at least 3% faster to win, for smaller speed difference the 
game should end up draw”. As we see in Figure 6, this 
additional constraint would lead to a syncTime of exactly 9. 
 

 



 

  
Figure 6: Results for game board 1 

 

 
 

Figure 7: Results for game board 2 

 
The results for game board 2 (see Figure 7) differ 
significantly from those for game board 1: All depths 
between 4 and 9 occur and challenging geogames can be 
found for three different depths, offering a variety of possible 
game flows. Figure 8 shows the optimal path for syncTime 5 
and speed-factor 1.02 with depth 8 and illustrates the kind of 
strategic elements paired with physical movement that make 
a geogame challenging. At the beginning of this game it all 
looks like a race-style game. Player X starts running through 
the upper horizontal line, while player O occupies the middle 
spot 5. But because of the syncTime interval, player X is 
forced to wait and meanwhile player O can prevent a fast 
win by taking location 1. Player X in return prohibits player 
O the win by moving to location 9. This in turn forces player 
O to move to location 6 so that player X is not able to get 
three in a column. Finally, player X now can take advantage 
of his speed and takes locations 8 and 7 before player O can 
reach any of them.  
 

 
 

Figure 8: Game flow of a challenging geogame 

 
RELATED WORK AND OUTLOOK 
 
In this paper we presented the geogames tool for balancing 
geogames “offline” to be challenging and fair. We extended 
the standard MinMax algorithm to handle concurrent moves 
frequently occurring in real-time games and took into 
account the spatial dimension in which location-based games 
take place. The syncTime parameter and the players’ 
physical abilities in form of the speed-factor are integrated 
into our spatio-temporal MinMax algorithm. With the 
resulting parameter space the game designer can decide how 
to balance the game taking different physical abilities of 
players into account. 
 
Recently, adaptations of state space analysis have been 
proposed for real-time settings. An example is the sampling-
based method using randomized alpha-beta trees proposed in 
Kovarsky and Buro (2005). Such approaches address the 
problem of planning an appropriate move at playing time. 
However, they do not solve the issue at design time where 
the designer wants to know how changes in the game’s rules 
affect the game balance. AI techniques, like variants of 
MinMax-search, have been applied to board games and are 
constantly improved to create increasingly smart computer 
opponents, e.g. for Othello (Buro 1999). Although these 
results are interesting, they are out of the the focus of our 
paper which is not concerned with the development of 
optimal search algorithms or pruning strategies but with 
adapting search algorithms to handle geogames. 
 
Location-based real-time games abandon the idea of turn-
taking of classical board games and result in a 
synchronization problem. Nicklas et al. (2001) propose a 
solution which is inspired by methods for allocating machine 
resources to concurrent processes. Similarly, Natkin and 
Vega (2003) and Vega et al. (2004) show how to assist the 
game designer in finding dead locks in the game flow using 

 



 

Petri-nets to describe the game. This type of research focuses 
on concurrency but does not address, let alone answer the 
problem of synchronization that characterizes the difference 
between race-style games, challenging geogames and 
classical board games. 
 
A line of research similar in spirit to our approach is the 
study of game design patterns. Typically, a critical mass of 
existing games is examined to find common game patterns 
(Davidsson et al., 2004; Björk et al., 2003). Another 
empirical approach consists in analyzing team design of 
games (Björk and Åkesson, 2002). An even more holistic 
approach is followed by Konzack (2002) who distinguishes 
seven levels of game design: hardware, program code, 
functionality, game play, meaning, referentiality and socio-
culture. Our analysis is clearly limited to the level of game 
play leaving it to the game designer to decorate the geogame 
once constructed with appropriate elements right up to the 
level of socio-cultural embedding. However, different from 
our emphasis, game pattern research seems to make little 
effort to gain a deeper understanding of the design 
parameters and their interaction. 
 
As future work for the geogames analysis tool we plan to 
implement more complex games, like CityPoker or variants 
of chess like “progressive chess” or “double move chess” 
(see e.g. http://www.chessvariants.org/), which already lift 
turn-based restrictions to some degree. Although our 
geogames tool is able to handle multi-player geogames, good 
evaluation functions for concrete geogames have to be 
implemented and evaluated.  
 
Furthermore, we plan to build into our model a parameter for 
the players’ cleverness. Imagine one player spending much 
time on reasoning but moving slowly, while the other player 
is moving fast but does not invest much effort in thinking. 
Simulating games with this constellation could make up an 
interesting case for testing the relationship between 
reasoning time and acting time. By varying one player’s 
search depth and the other’s speed, the balance of speed 
against reasoning could be emulated.   
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